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Abstract
The present text constitutes a compilation of humanity's fervour to ascertain the enigmatic number pi,
entitled "Revealing the secrets of the number pi and the algorithms of the copper number". In this essay,
we seek to illuminate the hidden intricacies of this number, explore its potential connections with other
numerical entities, investigate the alleged falsehoods associated with its proponents, and delve into more
complex subjects by employing calculus, series, and contemporary technologies. The document's
intention is to demonstrate the methods and justify the interesting procedures that lead to the solution of
numerical problems, with a particular focus on the number pi. It is a valuable resource for
mathematicians, computer scientists, and anyone with an interest in formulas or the human ingenuity
behind their discovery. The author posits that each contribution of knowledge leads to a subsequent step,
and the discovery of the so-called "absolutely convergent series" will allow the reader to devise an
algorithm to find all the digits of pi.

Introduction

We provide the reader with basic instructions to deepen the topics of classical geometry, use of freely available
computational tools and the background of the most relevant concepts of numerical calculus such as series and
limits, which will allow us to contextualize theoretical foundations to unravel the enigmatic number pi. From the
perspective of mathematical authors, in history, we can perceive the longing and inspiration that lead to the
discovery of an emblematic problem defined by Archimedes as “The squaring of the circle” and later named by
Euler with the Greek letter (pi) (7T ) A problem that existed long before and that apparently in all ages unified
wise men in a common purpose. All these authors wrote about it, committed themselves to obtaining it, motivated
by being the first to see what others had not been able to, and then, in the face of failure and resignation, they
gave way to future generations.

One of the most important numbers in mathematics is the number pi, probably not a common or necessary
number for many people. However, this number is present in a large number of equations and is part of the

solution of many scientific statements. Some important examples, it is present in Albert Einstein's famous

. e . T 8mG
equations of general relativity, in the cosmological constant of the gravitational curvature tensor Gy, = — Ty

C4'
It is also present in the Heisenberg uncertainty principle, which introduces a fundamental limit of particle theory
and where the energy of a photon with angular frequency w = 27f, can be expressed as E = hw, which is one of
the most important formulas of quantum mechanics [8]. The number pi is found in many other formulas and
equations, in probability theory, in more tangible matters, perhaps, such as in the geometry of space, and it is
because of this that some scientists distinguish it with a metallic name of “copper”, since it is in many cases the

essence of things.

The challenge associated with the number pi is to find more and more of its decimals, since it is irrational,
transcendent and to get to it will have to pass first through infinite limits and Euler's e number. Obtaining its digits
became a kind of competition among scientists and computer scientists in the world. The current record is held by
a data storage company called Solidigm [10], who announced it in March of this year 2024, before 2023 the




The Electronic Journal of Mathematics and Technology, Volume 19, Number 3, ISSN 1933-2823

record belonged to Google Cloud. The company announced on March 15 (date that celebrates the day of the
number pi within the year) that they had managed to reach the mark of 105 trillion digits of this number, but this
changes very fast and it seems to me that already in August this year is around 300 trillion decimals discovered,
using computational methods, which demands large amount of memory and large amount of processes. This may
be crazy, but Akira Haraguchi, a Japanese engineer and mental therapist, is known for breaking the world record
for memorizing digits of the number pi, which he managed to remember 100,000 digits and demonstrated it on
October 3, 2006. Akira started reciting the decimals of pi in the plenary hall of the city hall of Kisarazu, Japan,
and it took him a total of 16.5 hours to recite all the digits he had memorized without making any mistakes [9].
Could this be another obsession of the human fervor for discovery? What could be obtained if we achieve more
decimals of pi, some believe that something can happen, and the fact of being able to work with infinitely large
numbers such as Graham's number or others incredibly accurate as pi, could perhaps open doors to unexplored
areas of knowledge.

In this essay, we will develop background issues that lead to obtaining these decimals of pi and knowing that
computers are capable of so much more, we will be able to see the digits of pi and help Akira recite the decimals
to count from 100,001 onwards. We will explain motivations, use tools and give an account of some secrets,
which are kept in patents of those who have made this work a professional activity. We will explain the most
famous methods and describe how to arrive at a new algorithm, of our authorship in Python, which we will call
Algorithm ASS.

The devastating problem of squaring a circle

It is imperative to note that in order to approach geometric structures, the utilization of Geogebra is
strongly recommended.

Throughout history, mathematicians and geometers, whether
amateurs or seasoned professionals, have consistently
endeavored to explore these concepts.

D

The objective is to derive a square with an area equivalent to
that of a circle through a finite mechanical sequence of steps.
In antiquity, this process entailed the repeated use of a
compass, transforming a square into a circle and vice versa.

The crux of the challenge lies in the intractability of obtaining
a segment of length equal to the irrational number pi,
approximately m ~ 3.141592653589794. However, it is
possible to obtain a segment that measures an irrational
number of a similar nature, such as the numbers:

Figure 1. Graphic relationship of the
same area, expressed in a square and a
circumference.

The graphical relationship of the same area, expressed in a square and a circumference, is the same for

V2 (the diagonal of a square with a side length of 1) or v/5 (the hypotenuse of a triangle with legs of

lengths 2 and 1), or in general for V2. This revelation, however, was previously unknown, and
throughout history, the same problem persisted, prompting mathematicians to engage with it repeatedly.
Perhaps because this kind of problem did not seem too complex for a somewhat experienced
geometrician, many claimed its solution, like the root of 2, was possible.

Part 1. What you need to know before knowing pi
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This part is intended to investigate foundational aspects of mathematical thinking and to recognize
geometric and mathematical representations that establish numerical regularities. Processes that
occurred in the history of mankind and are closely related to the number pi.

1.Perimeter and area of a circle

The Egyptians are credited with many of the primary geometric and mathematical concepts that the
Greeks used in their writings. It is evident that Egyptian, Mesopotamian, and Indian mathematics
inspired Greeks such as Thales of Miletus (between 624 B.C. - 546 B.C.) and Pythagoras (582 B.C. -
507 B.C.), who gave the initial start to Greek mathematics, or Hellenic mathematics, after the time of
Alexander the Great and before the Roman Empire, around 27 B.C.

The Egyptians, using an approximation of —
the number pi, made their calculations
evident when they tried to roll a circle with . @E

a drop of ink on papyrus, with which they
had an excellent approximation of the

perimeter 2 i r, applying proportions -1 OTB 1 2 3 - 5 5 o
showed regularities that showed signs of

possessing a secret fact.or implicit in the Figure 2. Rotational displacement of a wheel starts
operation with 2 7, which was related to the from a mark until its circumference is reached.

perimeter of the circle of radius 1.

The Rhind Papyrus (or Ahmes Papyrus, its author dates 2 BN

from about 1650 B.C.) to how to find the value of by / \
approximating the area of a square with sides 4 and then 5

8 to that of a circle with diameter 4 and then 8. The area '7 \'

of the circle is approximately equal to the area of an
octagon (irregular) of 12 and 24 sides. More details are in
the publication of [18] Beckmann P. (1971) Publishes A 1 3

History of Pi1.St. Martin's Press. \ /

SN——

Figure 3. Circle inscribed in a Square.
The Square is divided to establish an
approximate measurement of each side
of the irregular polygon, approximating
the perimeter.

1 1 1 256

5+ﬁ+ﬁ:8—1z3.16

3+

2. Archimedean Polygons
It was Archimedes (Archimedes of Syracuse ac. 287 - ac. 212, with an astronomer father) who
formalized the problem and managed to have a good approximation of the area of a circumference.
He also managed to do many other things, he was a renowned mathematician of the time and was
very advanced with his ability to perform physical, mechanical, hydrostatic and other applications,
in almost all areas of science. In particular, when he needed the area or perimeter of a circle, he
knew that a constant was implicit here, since when modifying the size of the radius in the formulas
215
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of the area Pi * r? and the perimeter Pi - 27 (of his own authorship), it was only necessary to
multiply by this constant Pi. Then he proposed to approximate the perimeter of a circumference of
radius equal to 1 (where the unit could be the customary one in Greek times, 1 palame, which was
the width of the palm of the hand without the thumb) and he was aware that then he only had to
divide it in half. He considered from the center the 360 degrees of the complete angle, dividing it
into equal parts depending on the number of sides of an inscribed polygon and another
circumscribed to the circumference. He used trigonometry on each concentric triangle to obtain the
lengths of the sides of each polygon and increased the sides of each polygon to "enclose" or bound
the value of the perimeter length measure [5].

Thus, depending on the number of sides of the polygon, the cosine of the angle is determined. This task

was undertaken by Archimedes with a polygon of 96 sides. Let us recall that =1, and % = 1:5 =
3945" = 3.75° |2]
2m ~ 96 - /2 — 2¢0s(3.75%) ~ 6.282 = == So: T~ = = 3,141
500 1000

He succeeded in bounding pi from below with the inscribed polygon [6], and then from above with the
circumscribed polygons of 96 sides, thereby obtaining bounds for the value of pi.:

3.141 < m < 3.142

a = 360/N central angle of each concentric triangle
starting from one of the sides of the N-sided polygon.

Lc will be the side of the circumscribed polygon.

Li will be the side of the inscribed polygon.

r will be the radius of the circumference, which will be 1.
N = 6 is the case of the figure on the right. Then:

If we look only at the situation of the inscribed polygon, it
is deduced by trigonometric identity of the mean angle [1]:

o _ay 1—cos(a) Lel2
Li'=2rsin (E) =2 2 =TV2—2cosa Figure 4. By regular polygons inscribed
and circumscribed to the circumference
of radius 1.

Then, according to the number of sides of the polygon, the cosine of the angle is determined.

Archimedes did this task with a 96-sided polygon. Recalled that r = 1, and % = 1:5 = 3%45' =

3.75° [2]

3141 3141

2 = 96 - 4/2 — 2 c0s(3.75°) ~ 6.282 = — Thus: T ~ — = 3.141
500 1000

He was able to bound below pi with the inscribed polygon [6] and then above the value with
circumscribed 96-sided polygons, obtaining dimensions for the value of pi:
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3141 < w < 3.142

3. Fractional representation of real numbers by Euclid's algorithm

Approximation of a decimal.
Leta, b be any positive integers, with a # b and a < b. What we want is to obtain an

o .a oL . .
approximation of the fraction X By the division algorithm we know that there always exists q, € Z

such that we can write: b = aqy + 1y with 0 < r < a. Graphically, the situation is:

b
. . _—-—A—_._
For the case in which g=3 o p p o
also exists q; € Z and r; such that: ' 4 2 a o a
a=r1yq, +r,with.0 <r <r I
This is interpreted with the graph:
.
t I,
0
T
" For the case in which q; = 1
Thus, we summarize that:
a a 1 1 1 1 1
—_ = = = T = T = =
b aqo + To aqOT-I_rO qo + EO 9o + o1 0+ m 9o + —T0q11+ 7”1 do + 2
B q; + To

As you can see, a convenient stepwise decomposition occurs. Now if the purpose is to have as good an

o : T . :
approximation as we want and we will get to one of the finites nTH, we will replace them with a value
like 1.

For example, let's obtain by this algorithm a reasonable fractional approximation for the decimal
number 0.5555 and use all the decimals that the calculator gives us. We start by first asking how many

times the unit can be contained in 0.5555 and since it is not, then: 0.5555 =~ 0 + %. We decompose b

asking ourselves how many times the first remainder 0.5555 is contained in the unit, from the question

1
0.5555

= 1.80018 -+, the answer is 1, and we say: 0.5555 = ﬁ We continue decomposing ¢ with

c

remainder r; = 1 — 0.5555 = 0.4445, and ask ourselves how many times is contained in 0.5555, the

. 55 . .
operation is 02245 1.24971 ---, and the answer is 1 again. We already have: 0.5555 = L Now,

. 1+
1+a

we continue with the next remainder r, = 0.5555 — 0.4445 = 0.111

. .. . . . . 0.4445
And we answer how many times it is contained in 0.4445, with the operation 0111

= 4.0045, the

answer is 4.
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1 5
If we leave the algorithmic approach up to this point, we obtain: 0.5555 = 11 =5
t—1

1+7

You can confirm that this fractional approach is of very good quality.

Decimal approximation of the root of 2. Let's try with another number, let's get a fractional
approximation of the number v/2, which we know is irrational and use Geogebra to recognize with the
compass when one segment is contained in the other [4].

Let's start with a segment that measures this value

I am referring to the diagonal of the square, of side one
unit. You can verify by the Pythagorean Theorem this
statement, being the hypotenuse of one of the halves of the
square and being right triangles, the measure of the
diagonal is exactly v2. Now we can have a geometric
representation, using a compass. We start with a circle with
center at the lower left vertex and radius 1, it responds to
the idea that how many times the side of the square is
contained in its diagonal, it digs only once. The excess of
the diagonal (outside this first circle) ED, is taken up by the
radius of another circle, which, with another of equal size,

indicates that this excess is contained twice on the other Figure 5. Subdivision of the diagonal
part of the diagonal FE and GF. Continuing, AG is of a square with the Geogebra digital
contained twice over the other component. compass.

This process is recorded as follows, the times that one segment is contained over the other is in dark

color:

1 LI ! =2 1414285714
+ T -t 1 707
3 2+—1
24—
24774,

As you can see this compass procedure is exactly Euclid's algorithm. Thus, we obtain a reduced
fraction, which has a very good approximation to the fourth decimal place. V2 = 1.414213562...

Euclid's algorithm allows us to obtain the decimals with the desired precision, as it is a

nomenclature, modern science calls it "continuous fractional form" and has a presentation format,
which in this case is [1; 2].

Some scholars took this very seriously and you can see how an amateur mathematician defined a
method that repeatedly included the root of 2, with which he managed to calculate the exact perimeter
of a circumference, see [7].

4. Hippocrates lunula area
While the central problem of the "squaring of the circle" remained unsolved more than 240 years before
Archimedes, other equally important issues were still around, and the news of the demonstration of the
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lunula of Hippocrates [ Greek mathematician Hippocrates of Chios, 470 BC] spreads. This
argumentation came to create hope also in the squaring of areas of a part of the circumference, which
could serve to continue the work with the entire circumference.

The figure on the left corresponds to the squaring of the lunula,
a fact that highlights the fervor of this type of theme at the
time.

These demonstrations were made with operations similar to
the famous Pythagorean Theorem (published around 510
BC), by which the Pythagorean school was created in Magna
Graecia, a school of thought that combined philosophical,
mystical and scientific aspects. It is that the Pythagorean
Theorem was judged by history and it seems to have been
discovered much earlier, the Babylonians already used it.

Figure 6. Square of the Hippocrates
lunula. The area of the square and the
lunula are equal.

Later, in another part of the world, the Arab mathematician Alhacen (945-1040 AD), recovered the
same statement from the Lunulas. Perhaps he found the source, but at that time traveling was very
difficult, the publications were handmade and possibly the temptation to be the author of these subjects
in another region allowed to be valued among his peers, all limited to know the source. He tried with
these arguments of the lunulae to square the circumference and admitted to having failed. Whatever the
outcome, the lesson prompted others to rethink these issues. Alhacen had more virtues, he was a
precursor of other trends in non-Euclidean geometry by exploring and proposing to modify the "Sth
Euclidean postulate of parallels" (the fifth postulate of Euclid's Elements).

5.The Fibonacci series
Leonardo of Pisa, better known as Fibonacci (1170-1250 AD), in 1202 AD wrote his book "Liber
abbaci" which means "the book of calculation". He explains in his publication about a sequence of the
breeding and reproduction of rabbits, which in a few rules could estimate the number of rabbits that
there would be in a certain time. The series is generated by the reproductive characteristics of the
rabbits in an idealized environment, so that from a pair of rabbits they only reach reproductive maturity
after three months. Thus, in the third month they have a pair of offspring (another pair of different
sexes), and when these reach maturity in the third month they will be able to add another pair and so it
would agree with the sequence counting the pairs of rabbits. Of course, rabbits are not born this way,
but that does not matter as long as we describe a special phenomenon and as if things were this way.
Fibonacci poses in his book the problem: how many pairs of rabbits are there after one year (12
months)?
Following the series:

Fibonacci Series. This is the count of pairs of rabbits that would be in each month
| 1 | 1| 2| 3| s [ 8 [13]20]3a]55] 89]14a]
1 2 3 4 5 6 7 8 9 10 11 12

Answer: 144 pairs of rabbits completed the year. The curious thing about the exercise is that in order to
know how many pairs of rabbits there will be next month, it consists of adding those of the two
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previous months. That is to say, at the 12th month 144 pairs were completed, when at the 10th and 11th
month there were 55 and 89 respectively, it is confirmed 55+89=144.

This series was not exactly invented by Fibonacci, but he made it very popular in his book, rather all
the rest of his work was devoted to making popular other Arabic methods of calculation that we all
know today. It happens that Fibonacci's example became more and more known, because some
followers rescued his legacy and collected different examples from nature, as if this series was a very
probable sequence of the growth in various natural developments: the petals of flowers, stems of plants
and leaves of cobs, etc. What is more, this seemed to relate strongly to another number in vogue in
antiquity, a special number used by the architects of the time and referred to as the golden number,
namely the number fi ¢.
1445
¢="3
= 1,6180339887498948482045868343656381177203091798057628621354486227

Interestingly, an incredible relationship was noticed between ¢ and the convergence of a limit that

included the Fibonacci series: lim =% = ¢ That is, if we divide two consecutive numbers of the

n—-oo n
Fibonacci series and do it jes el 144!

progressively, we obtain the limit that is the golden number

Fs 5 F, 8 F, 13

F_4=§=166 5 F—5=§=16 5 F—6=?=1625
It is anecdotal how does one get to the other? It was one more of these discoveries and the appeal of
mathematics. The relationship between the Fibonacci sequence with the number fi would also allow
us to find any number in the sequence. It can be shown that, for a large number in the position of the

Fibonacci series, the relationship is established:

E, = \/ig ¢™ This is deduced from Binet's formula (explained below).

For example, what number will be in position 12 of the Fibonacci series, which we already know,
but we will be able to confirm it..., it is calculated: \/ig (1.618)1% ~ 143.96 and we say then,

when rounding, jes el 144! As you can confirm in the rule above, this is true!

6.The gold number, the metallic numbers and out of this category the

numbers: platinum and copper

The golden number is the category that receives numberg (also number of God). It was used by a
Greek sculptor named Phidias, who was said to have a secret to establish the proportions of his works
that made them especially attractive to the eye and it was this proportion¢ . Phidias' fame derived from
the creation of the statue of Olympian Zeus, installed in the temple of Zeus at Olympia near Athens in
the ancient Graces and considered one of the seven wonders of the ancient world.

The principle consisted of a proportion that was apparently considered whenever it was required to
draw the design of the human body and this was extrapolated to all objects in the scene. It was also
used by Leonardo Da Vinci. But this secret hovered among the scholars who collected these curiosities
of mathematics. It was described as a number that squared equals the same number plus 1.
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Euclid defines it in his work "The Elements" as "two numbers a and b are at golden ratio if and
only if a/b = (a + b)/a, which also indicates that it cannot be written between the division of
two integers, it is an irrational. That is to say:

a a+b
b~ a
a (a+b):b
b a :b
If we collect the latter, we obtain:
a_ a/b+1
b a_/l_bl
¢
¢ = 5
Then, it is a number such that when squared it is equal to the same number plus 1:
p°=¢+1

This condition coincides with the quadratic equation: x? —x — 1 = 0, which we can solve with the
general formula:

o . . . .. 145
Now, if it is a geometric solution we should consider only the positive result: x = +T\/— number that

1-V5 _ -1

X

we already showed as irrational. Moreover, the other solution of the equation is
-1

145
2

expressed in a segment of the Euclidean plane, explained below in Geogebra. Note that this

number Fi, has an incredible reduced Euclidean representation, with continuous fractional form [1;
1]. Doesn't this representation seem idealized to you?

check it by rationalizing the latter could be a coincidence? Interestingly this number can be

As if it were the definition of "unit" for Euclid's algorithm.
pr1— B
L@
1+

T
1+937

Achieving this number with the compass is very simple. Use Geogebra.
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viSia AlgeDraica oA r Visia uranca

Cénica

® cxi+ly-1V=1

Nimero
fi=1.618033988749895

Punto

® A=(2,0)

@® B=(0,1)

@ C=(-0.894427190999916, 1.447

Segmento

@ b=3.23606797749979

@ d=2.23606797749979

Semimecta

® ax-2y=2

Figure 7. We obtain sqrt(5) in the hypotenuse of the triangle with legs 1 and 2.

Proceed by creating a right triangle, where the square sqrt(5) is located on the triangle's hypotenuse, and
the legs measure 1 and 2. Then, subtract 1 from this hypotenuse segment. The excess length is exactly
the number phi.

When the representation in Euclid's algorithm of this number¢g became known, some mathematicians
considered it pertinent to give them a name. Argentine mathematicians led by Vera G. de Spinadel
(1929 -) in 1994, called them "metallic number family" [12], these are positive quadratic irrational
numbers, which correspond to the positive solutions of the quadratic equation: x? — bx — ¢ = 0 where
both b and ¢ are natural numbers. The number ¢ was called the golden number, of course the metallic
number family is larger and its name has an explanation related to Euclid's algorithm.

At the time it was believed that this number could be the precursor of a new numeration and could be
like the much sought after number pi, but clearly they were of different natures. The number ¢ was
more related to a class of geometric and proportional numbers that were used as geometric series, in
the context of arts and nature. With these quadratic equation solutions, we can explain the relationship
it has with the Fibonacci series.

We have already said that: % = ¢ when n is very large, and by the related property of Fibonacci:

Fy + Fr1 = Fuye

Then:
Fh+2 __Fh+1 +'Ph Ph

Fh+1 Fﬁ+1 Fh+1

We collect the extremes of this equality:

F, 1

n+2 =1+

Frtq fﬁil
Ey

Thus this will happen again for another n+1, and we are presented with a Euclidean reduction as n
grows, in identical form of ¢.
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Fn+3=1+ 1 Fn+4=1+ 1
Fn+2 1 Fn+3 ;
1+ F 1+ 1
n+1 1 +
Fy Fni1

Fy
In addition, the French mathematician Jacques Philippe Marie Binet (1786), defines the well-known
Binet formula, which uses the two solutions of the quadratic equation already mentioned, and
expresses something difficult to believe:

R E)

In this case, when n is very large we can eliminate part of the expression since lim (1_—\/5) -0

n—oo 2

Other numbers were classified among the family of "metallic number family" [12], but none came from
the numbers that motivate us, since the family was limited only to those that fulfilled the condition of
being solutions of quadratic equations, which neithere or pi do.

There are no official associations of metals with the numberse (Euler) or pi, but some mathematicians
have proposed: The number e (Euler) is associated with platinum, because of its rarity and value in
mathematics; the number 7 is associated with copper, because of its importance in geometry and
circumference (or because it connects everything like electrical wiring).

7. Calculating numerical accuracy, relationship between old and new

methods

The representation of decimal numbers in a computer is called floating point. This representation has a
finite decimal point which under a robust numerical framework can be extended so that the computer
considers more decimals. The usual numerical packages such as MatLab, ScilLab, Mathematics;
maintain a standard precision level of 15 decimal places, the rest are filled with zeros, depending on the
number of operations required, since the numerical control algorithms maintain precision in iterated
multiplications and divisions. The compensation of the decimal representation further away from the
range 1s achieved with algebraic expressions such as fractions and Euclid's algorithm. So these
structures are not dismissed out of hand, as if they were discontinued or obsolete. By no means, these
old structures are used in large computational processes and operations. Today there are powerful tools
available on the Internet, Wolfram Alpha: Computational Intelligence [11], which we will use to query
numerical services without getting into the complications of representation.

Imagine that decimals can be stored in a vector of digits, so that they are treated as large numbers
instead of tenths. The purpose will be to operate and update the results with long vectors of digits, where
position is relevant.

The square root of 3 or sqrt(3) with the digital compass in Geogebra

223



The Electronic Journal of Mathematics and Technology, Volume 19, Number 3, ISSN 1933-2823

The sqrt(3) can be obtained in a segment with
12 the Geogebra computer program.

We know that V2 corresponds to the diagonal of
a square with sides 1. Therefore, if we build on
this diagonal another right triangle with a leg on
this diagonal and a leg of measure 1, the
hypotenuse will be V3

representation. Now we will use Euclid's

VR S R / R VR Surely you already knew this geometric

. . 1
theorem to obtain the reciprocal =

Figure 8. Sqrt(3) is obtained with a right

triangle, with sqrt(2) and 1.
I hope to surprise you a little with this idea.
The segment V3 was used as the leg of a right
triangle at F, the other leg of length 1.

Then another right triangle with red legs is
completed (as shown in the figure). The
prolongation of the segment where the root of
3 was, according to Euclid's Theorem
corresponds to the reciprocal of the root of 3

1/raiz(3)

Figure 9. The reciprocal value of the sqrt(3) is
obtained by extending the segment and applying
Euclid's Theorem.

If you weren't surprised, maybe with this one you will be. The reciprocal of root of 3 will be a number
we will need later, and we require all its decimals to be considered by a large computer. We need,
perhaps, more than 1000000 decimals of this number, so you may wonder how we could do this. If we
proceed with Euclid's algorithm to approximate with a fraction in this segment we will systematically

obtain:

1
— = = 0.6
L
) ) 1+7
Y - — 0.5773195876
V314 T
2+ :
2+ :
1+o19
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We do not need to continue any further, with these iterations we already have its continuous fractional
expression.

Wolfram Alpha Computational Platform expresses it as:
1
ﬁ ~ 0,57735026918962576450914878050195745564760175
~.1270126876018602326483977672302933345693715395585749525225208713805135

This is in continuous fractional form [0; 1,1,2]

In this way and later, we will ask a computer to complete all the required decimals with Euclid's
algorithm, doing operations of addition, multiplication and division, controlling in each case the
projected decimal continuity. The idea is to do these operations as any schoolchild learning with 4
decimals, but now with the requested extension.

8. Leibniz's proposal to obtain the value of pi

Now with sums instead of products, it is the so-called Leibniz formula deduced in the 17th century by
the German mathematician who gives his name to it. The process of Wallis integrals that we did earlier
taught us to work with infinite sums, so you should not be surprised by Leibniz's proposal:

_ 1,1 1,1 1 : T _ oo (DR
n—4(1 §-I-§ 7+§ ot ) or what is the same ” = Yre1 =
We can represent this in infinite sums, called alternating series due to their change of sign.

Functions associated with infinite sums.
Before, we can mention that there is a correspondence between some functions with infinite series.
For example, we define as geometric series, the one that allows us to add the following numbers:

Sty t oty tait st e

7 k-1
10 20 40 80 160 320 25 (2)
3

k=1

It is called geometric sum only because the regularity between the number succeeding the other is
formed from the multiplication of r = %

You can check that the result of this sum is obtained from the formula:
2 7
. 1- (g) _ 10295

2 729
1-3

Moreover, this example considers 7 terms of the sum, but we can extend this sum to infinite since the

~ 14.122

n
multiplicative ratio has the property of being r = g < 1.Thatis lim G) = 0, is satisfied, then:

n—->oo

o 2\”

2 12 1
Zs-(—) =5 ——3—=5-—=15
3 1_2 1_2

k=1 3 3

Now if we make some changes, we come to the conclusion that infinite power functions "converge"
whenever the value ofr is between —1 <r <1.
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fr)=1+r+r2+rd =Zr"=T aslongas|r| <1
n=0
Thus, also, if we replace with r = —x?2, we get:

= Z(—l X" = Z(—l)” -x?"  provided that |x| < 1
n=0 n=0

Then, if we integrate the left and right sides, we obtain the so-called Gregory-Leibniz formula:

2n+1

+1

arctan(x) = Z( 1)”

We check that if x = 1 is achieved arctan(1) = % and we obtain Leibniz's formula. However, x = 1

is not within the convergence interval of this series, that is why Leibniz develops other convergence
criteria for alternating series. Then, if we change the beginning of n=0 to k=1,1i.e.n = k — 1, we
arrive at Leibniz's expression:

9. Taylor series and Euler transforms

Taylor series approximations

Power series are infinite sums that approximate functions, the domain of the function is the interval
of convergence of the series. Taylor (Frederick Winslow Taylor (1856-1915), industrial engineer by
profession, was born in Philadelphia, USA). He defined the power series of any differentiable
function f of order n , around x = a.

- )
F(x) = z cp(x —a)™ then ¢, = ! n!(a)

n=0
The advantages are enormous, since we can find a polynomial that approximates the function around
a convergence interval where the value ofx = a is in the center. With this we will make a leap to the
models of convergence of the number pi.

For example, if we use the function f(x) = arctan (x) and derive it to apply the Taylor series around
= 0, we obtain:

! n 2 nr 6x2 - 2
f(x)=arctan(x);f(X)=w.f ()_(1+ 2)2'f ()_m;
24x(1 — x2) _ 120 x* — 240x7 + 24

f(4)(x) W. f ( ) (1 + x2)5

fO =0 f(O=1 f"0)=0; f"(0)=-2 fH0)=0; fO(0)=24
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Consider that when evaluating to zero the even derivatives also result in zero. Thus, we confirm the
alternating series for the arctangent, but this time obtained by the Taylor series.

0 1 0 -2 0 24 5
arctan(x) = —x* + —x' +—x? + —x3 4+ —x* 4+ —x° +-
0! 11 21 213 4! 415
So, then:

1 1 o 2n+1
— 3 5 = —1)"-
XXt g Z)( T

n=

This series relates to our theme because arctan(1) = %

An example of Euler transforms with number series.

The Euler argument demonstrates that the harmonic series, which we know for those who have studied
this, the harmonic is divergent and turns out to be convergent when it is alternating and furthermore
converges to [n(2) (or the natural logarithm of 2).

1 _1\yn—1
1—§+——— Z( D =1n(2)

Let us see how this is justified. The sum of terms of the alternating harmonic series can be written as
an integral:

1 1+1
3

L,
2 4

2 3 4
We can think that it is: x — x? + x? - x: + --- and it is the result of an integral, then it is evaluated

between 0 and
1 of the definite integral is obtained. But which integral are we talking about?
From this integral fol(l —x + x* — x3 + ---) dx. Do you agree?

We said earlier that:
1
1+r+r2+r3+4+..= — provided that |[r| < 1

Thus, if we replacer = —x we obtain:

= Z(—l-x)n = Z(—l)"-x" =1—-x+x2—x3+--
n=0 n=0

Then:
1

1
j(l—x+x2—x3+~~)dx=f dx=In(1+x) | =)
1+x 0
0 0
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Great, isn't it?

So, we can approximate numbers by series. Euler has more cards up his sleeve for these things.

Part 2. The secrets

The next part will be devoted to revealing the secrets to obtain an efficient algorithm to reach all
decimals of pi. For various reasons these have not been fully revealed, and you may not know them. If
you are a computer professional, you will be able to identify the techniques of large number processing.
We will discuss integer operations on decimals to solve the problem of representing the floating point
in a bounded environment, even if it is over the 100,000th decimal place or larger, if you prefer, of the
number pi.

When we want to work with many decimals, we face the problem of numerical representation in
computers, first let's go back to the Taylor series and then let's worry about the numerical
representation. For all these models it is known, it is better to use fractions than decimal numbers, that
is why the algorithms use mixed representations, thus, we only have to solve how to work with
decimals that are far away from the floating point of their computational representation.

1. The most successful way with continuous function.
Let's try another arctangent.

The case is tan (%) =L Then 6arctan (—) =1

V3

This time the function will f(x) = 6 arctan (\% — x) to be evaluated at x =0 .

Deriving to obtain the Taylor series, we obtain: b Vsl Agebaic T oo ;
2n+1 Funcién ) ~ .
it ( 1)1’1 <__x) .'(X):Gavctam\g_”
ol
o arctan <_ - x) =6 Z 2n+1 urzirg.141592553589794 3
for |x - _| <1 3

Then, the convergence interval is:

1
-1<x——=<1

V3

1 1
—14+—=<x<1+—

V3 V3
—0.4226 < x < 1.577 - . \ ;

That's fantastic; we've achieved it!

Then there is convergence for x=0. Figure 10. Decreasing curve of the

arctangent.

Then, an excellent series would be:
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- _2n+1
6 arct (1>—6 (-3 2
arctan 7 = 0 o 1
n=
Then for n=100
100 _2n+1
—D"3" 2
6 ———  =13.1415926535897935
2n+1

n=0

Thus, we discovered two very good series for our purpose. Both are convergent and systematically add
real number terms progressively. The problem here is that, if we use an algorithm like this, we depend
on the computer representation of decimals, because of these very small terms that must be added at the
end of the series. That is, we cannot be sure that this is the correct result not because we are doing it
wrong but because the computer uses a fixed number of decimals, about 15 decimals and when we
must go on and affect those further decimals would be just those that are at the limit of the computer's
numerical representation.

2. Newton's algorithm
In 1666 the mathematician and physicist Newton (Isaac Newton who proposed the theory of
gravitational attraction) obtained a series to calculate the number pi and concluded it from the

trigonometric value:
sin (T[ ) 1 N T . (1)
=) == — = arcsin (=
6 2 6 2

Studying Taylor's series, he finds the series of :

o < () 1\ n/6
_ arcsin X _ k 2k (_) _ T[_ _ E
f&) 2% ;2k+1x donde f\7)=772=3
Then:
5 (Zkk) 1 2k
kzo o (Z) ~ 1.047192239 ---

T
Where the correct value of g = 1.047197551 .-

Thus, increasing the n-value of the summation continued to approximate the remaining decimals [3].
We rate this algorithm as excellent.

3. The Bailey Borwein Plouffe (BBP) algorithm

It is a method that was developed in 1995 to calculate exclusively the number pi, with an infinite series,
so that the terms can be calculated independently [15]. Simon Plouffe together with David Bailey and
Peter Borwein obtained the formula using a computer program called PSLQ that searches for relations
between integers and in base 16.

The formula they derived was:
Bailey Borwein Plouffe (BBP) algorithm
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_i 1 ( 4 2 1 1 )
= 16 \8k+1 8k+4 8k+5 8k+6

k=0

The five-in-five proof of the summation argument:

ji 1 ( 4 2 1 1 ) _16071212445820879
16k \8k+1 8k+4 8k+5 8k+6/) 5115625817702400

~ 3,1415926454603363195570212224423818317274066179799071866969806544. ..

k=0

2.

k=0

16k \8k+1 8k+4 8k+5 8k+6// 20452025861189303550405613977600
~ 3,1415926535897911463887769659103474147790158884889967725870672423. .
14

Z 1 ( 4 2 1 1 )
£a\16 \8k +1 8k+4 8k+5 8k+6

9

( 1 ( 4 2 1 1 )) 64251934196540737654784844866951

_ 517658978311277334141536972885988480280412713877204531
 164775970468280051996408614883427417773042630551142400
~ 3.141592653589793238461732482037982486800056278143046732780578758091752793513404

The computational algorithm uses the numerical base 16 to optimize the calculation when many
decimals are used, only then the result of the operation is expressed in decimal base.

4. The Chudnovsky brothers' algorithm

Led by one of the brothers Gregory Chudnovsky, they proposed an algorithm that is based on a
Ramanujan formula. The Chudnovsky brothers (Ukrainians naturalized Americans) used their own
algorithm to calculate 2.7 billion digits of pi in 2009 where they obtained a world record, and then
progressively advanced until in 2011 they get 10 billion decimals of the number pi [13]. With this same
algorithm, computer scientists Alexander Yee and Shigeru Kondo in 2013 manage to calculate 12.1
billion decimals [14].

The algorithm is based on the generalized hypergeometric series. This being alternating has Leibniz
properties regarding its convergence.

(3k)! (k!)36403203k+3/2

1_, i (—1)k(6k)! (13591409 + 545140134k)
n k=0

The trick is to consider approximations by sections so that the result can be controlled in a vector of data
that maintains the position of the decimals as if they were whole numbers, and thus to complete each
segment where the sum term intervenes.

For example, if we observe the behavior of the algorithm on the first 50 known decimals of pi and from
them validate a rule. Let us consider this number of correct decimals of pi.

n~3.14159265358979323846264338327950288419716939937510582097494459230781640628620
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8998628034 825342117068

And we use the algorithm:

Chudnovsky Brothers Algorithm
1
= w (—1)*(6k)! (13591409 + 545140134k)
12-)
k=0 (3k)! (k!)36403203k+3/2

If we calculate the first term of that sum, the one corresponding tok = 0 , the approximation of pi
obtained will be 1 divided by that result, which gives us the following (with sums from
wolframalfa.com):
3.1415926535897342076684535915782983407622332609157
42688010 005
13 591 409

~ 3.1415926535897342076684535915782983407622332609157
. 06590894145498737666209401659108066117347469689758

Let us now calculate the first two terms. The approximation of pi will now bek = 0,1 divided by the sum
of them.
We get this:

3.1415926535897932384626433832795028841971676788548

27 243 597 425 235 335 774 827 985 240 064 000 000 v10 005
867 407 410 133 324 147 761 288 805 130 794 983 129
. 43383279502884197167678854846287912727790370642977335176958726

~ 3.1415926535897932384626

As can be seen, the decimals that were already exact with the first term are maintained with this second
term, and we add 14 more (they are the ones highlighted in bold). To do one more, let's see that the
trend continues with the next term. By calculating 1 divided by the sum of the first three(k = 0,1,2)
terms we get the following approximation of pi:
3.1415926535897932384626433832795028841971676788548

27 243 597 425 235 335774 827 985 240 064 000 000 v10 005
867 407 410 133 324 147 761 288 805 130 794 983 129
. 43383279502884197167678854846287912727790370642977335176958726

~ 3.1415926535897932384626

The previous ones are maintained, and 14 new exact decimals are added. And so on.

It is amazing to get sequences of 14 more exact decimal places with each additional term, since with very
few terms we get a much closer approximation to the real value. Much better than any algorithm. So, we
rate this algorithm as excellent.

5. Silva Selamé Algorithm (ASS)

If you find it incredible how they have been able to find and define these algorithms, now we will be
the protagonists. According to the study we have done in this essay, we can think of joining all the
considerations of the most outstanding mathematical authors in history and start from the beginning.

Let's develop our own algorithm, starting with:
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1
6 arctan (—) =1
V3

And we tried with: f(x) = 6 arctan (% — x) for which arose from the power series Taylor in x = 0,
f(0) =m.
( 1 >2n+1 2n+1
o (—1)"3”
= 6 Z =6 _—
& o+ 1 o+ 1

n=0

If we expand to x — 0

. (1 )_n 3x 3\/§x2+9\/§x4+27x5+0 ;
arctan \ ==X ) =g =7 "1 T 128 T 320 10D

With x=0

2n+1

6 arctan (\/—1§> =6 Z %

Let's work on the sum of terms to get an expression of the algorithm

ey (3B ) afscr(9))

aleer(m)
=6 ?3 Zm—ff

n=0

11
— 23 DL

1 1 1 1 1 1 1 1 1 1 )

=2V3 (_ ~ 9125 189 7720 " 2673 T 9477 32805 T 111537 373977 ' 1240029 4074381

= 23((5-5)*+ (G5~ 19) * (75~ 7073) * (5377 ~ 52008) * (557 ~ 573979 * (500 1)
- 45 189) T \729 " 2673) " \9477 ~ 32805/ T \111537 ~ 373977) " \1240029 ~ 4074381
5 1 1
- Z@IZ_O ((4k +1)3%%  (4k + 3)32k+1)
1, 1 1
253 & s o)
‘/§_9k 4k+1 12k+9

=2‘E([%G__) ( )] [92( 33) 93(113 45)] [94(17 517)+1(%_%)D

= 3.1415924542 --.

25 e ) * ks - 2 )
B 92k \8k +1 24k +9/ ' 92k+1\8k +5 24k + 21

n=0
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Thus, we have a first version of our algorithm:
Silva Selamé Algorithm (ASS)
- 17 1 1 1 1
a 2@;W[8k+ 17 24k+9 ' 72k +45 216k ¥ 189]

Let's try it five by five, as we did before with the BBP algorithm:

4
17 1 1 1 1

-2 el e
\/_k_081’< 8k+1 24k+9 72k +45 216k + 189

39109314160553059138384
7187364992322595305225 /3
~ 3.1415926535714033817737105645779184574970837090255880006245033603911097486396735

~ 41872279003639093245

9
17 1 1 1 1
:ZﬁkZ_OW[Sk+1_24k+9+72k+45_216k+189]

137966316378576542894866745012450339387116801633376
25354938938138034138686381394493163496142563285825 V3
~ 3.14159265358979323845998904545815723164682333580898559851810755021711576515774234

= 5078286000740054101

14
1 1 1 1 1
283l s
v_k_081k 8k +1 24k-+9-+72k—k45 216k + 189
14177725678419176989383216040837621457098441999820138432527910152984533089264

2605529945958674055891953933258696968178141125973921415295979480405325356925 v/3
~ 3.14159265358979323846264338327899429478611788675967126248193958028428440424653148

- 7154654789614631463

We have compared these correct decimals of pi:
m=3.14159265358979323846264338327950288419716939937510582097494459230781640628620899
8628034825342117068

6. Computational Algorithm and Memory Management

Programming defines the memory spaces necessary to store all the decimals of the first calculations. It
is important to start with a preset length, one billion decimals or more. From that moment on, the
calculations can determine rational or irrational, and if all of them the total number of decimals will be
considered. It begins then expressing those irrationals that are repeated in the process, will thus have the
precision to continue the operations of addition and multiplication. The inverses can be expressed with
all decimals and used as multiplication. So far so good if the calculations in the partial sections of the
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algorithm do not result in decimals that are outside the possible ranges of the floating point
computational representation.

For this reason, algorithms must consider computations on truncated decimal operations and treated as
integers. Let us discuss the situation about an array of decimals of pi and the storage of surplus
operations, when transiting from a specific point, in obtaining a set of decimals of pi.

3|]1|4]1|5[9]2[6]5|3]5 S
1 3|]4[s5]|6|7]8]|9]10]11]12]|13(14]|15(16]17|18]19]|20|21]|2

In an array (or memory vector) the previously obtained digits and the newly found digits are stored,
these are located starting from the previous position and only from that point. The characteristics of the
array can give clue of the exact place of the digits from where to continue.

Each set of calculations (summation argument) and with the current programming, can be distributed
among different processors, 32 or 64 or more processors can synchronize the calculations and get very
fast answers to obtain the billion or more decimal places of the number pi.
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Truncated multiplication computes a truncated product, a contiguous subsequence of the digits of the
product of 2 integers. Some truncated polynomial multiplication algorithms adapted to integers are
presented. They are based on the most used full n-digit multiplication algorithms with a time
complexity of O(n*), with 1 <a < 2, but a constant 100 times faster [16]. For example, products of the
least significant half with Karatsuba multiplication need only 80% of the full multiplication time. The
faster the multiplication, the less relative time savings can be achieved [17].

7. Code implementation, ASS Algorithm in Python (gmpy2 library)

The Python language has a unique command library for numerical computation in a long-decimal
execution environment. The library is called gmpy?2 and allows declaring the number of precision
decimals. Gmpy?2 is an optimized Python extension module coded in C that supports fast multiple-
precision arithmetic. It is based on the original gmpy module. Gmpy2 adds support for true multiple-
precision correctly rounded arithmetic (using the MPFR library) and complex arithmetic (using the
MPC library). This means that, in particular, the most timeconsuming division operations are controlled
and optimized for each command in the library.

Next, I will reveal one of the last secrets of these com algorithms. This algorithm we will code with this
Python library and its execution will give answer about the decimals of pi to be counted from decimal n.
Just as in Part 1 we learned how it was possible to obtain the Fibonacci number from a specific position,
now the coding of the algorithm will give us a set of decimals of pi from the nth position of its decimals.
This would allow us to avoid operating on the decimals already found and only solve for the decimals of
pi in an environment that is relevant for our purposes.

Coding stages:

Z 23 [ 1 L, 1 1
P 8118k +1 24k+9 72k+45 216k + 189
We will divide our algorithm into sections, for example, for the first section:
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S

ST LeiF ek +1
Then to optimize an efficient decimal response, we modify this section starting from a value n and then
N will be just a little higher, to optimize the precision around the decimal place n.

1= . 2v3 d[8k+1 8k+1 y 2V3 !
s1= kZ (W’”O (Bl + ]>/[ 1l +k;ﬂW[8k+1]

The mod command provides only the integer remainder of the division, then this remainder is divided
by [8k+1], thus taking care only of the remaining decimal places counting from position n. Then the
sum up to N is added, to ensure precision around decimal place n.

The same is done with the other sums of the terms of the algorithm. For these, it will be necessary to
eliminate the integer (before the comma) to control the result SumTotal= s1 - s2+ s3 - s4.

Below, we explain the complete code, which you can run in Google's Colab.
Complete code and execution

Let's go back to the digits of pi. The first case in red, counting from decimal 101 with 17 decimal
places of precision. But then, the second case against decimal 901, with more 76 decimal places of
precision. Both with 1000 decimal places of precision in the numerical context. Context,
GoogleColab memory, no GPU.

n=900
gmpy2.get context().precision=100030
« Digits from position 901
« It took less than 2 seconds to obtain the decimal places from 901

Definitive Python code

import sys

!{sys.executable} -m pip install gmpy2

'pip install gmpy2 --user # Install the gmpy2
import numpy as np

import math

import gmpy2

n=900

gmpy2.get context () .precision=100030

N=n+4

digitsPi=gmpy2.mpfr (0)

c=2*gmpy2.sqrt (3) # algorithm constants
lug=pow (10,n-1) # decimal position powers
cc=gmpy2.mpfr (c*lug) # position constant calculation
# first processor

pp=[] #1list of partial sum calculations
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Sumala=gmpy2.mpfr (0) # start addition of remainder/divisor

for k in range (0,n+1):
pp.append (gmpy2 .div (gmpy2 .mpfr (cc) ,gmpy2.mpfr (81**k))) # position precision
divisorl = gmpy2.mpz (8 * k + 1)
restol = gmpy2.fmod(pplk],gmpy2.mpfr(divisorl)) # MOD remainder, division whole
Sumala = Sumala + gmpy2.div(gmpy2.mpfr (restol),gmpy2.mpfr(divisorl)) # save division

Sumalb=gmpy2.mpfr (0) # start additional decimals

for k in range(n+l, N):
pp.append (gmpy2 .div (gmpy2 .mpfr (cc) ,gmpy2 .mpfr (81**k))) # position precision
Sumalb = Sumalb + gmpy2.div (gmpy2.mpfr (pplk]),gmpy2.mpfr(8 * k + 1))

Sumal = Sumala + Sumalb

Sumal = Sumal - gmpy2.trunc(Sumal) + 10.0 #Wildcard added for first priority

# second independent processor

Suma2a=gmpy2 .mpfr (0) # start addition of remainder/divisor

for k in range (0,n+1) :

divisor2 = gmpy2.mpz (24 * k + 9)

resto2 gmpy?2 . fmod (pp [k] , gmpy2 .mpfr (divisor2)) # MOD remainder, division whole
Suma2a = SumaZa + gmpy2.div(gmpy2.mpfr (resto2),gmpy2.mpfr(divisor2)) # save division
Sumalb=gmpy2.mpfr (0) # start additional decimals
for k in range(n+l, N):
Suma2b=Sumazb+gmpy2.div (gmpy2.mpfr (pplk]),gmpy2.mpfr (24 * k + 9))

Suma2 = SumaZa + Sumalb
Suma2 = Suma2 - gmpy2.trunc(Suma2) + 5.0 #Wildcard added for first priority in operation
# third independent processor
Suma3a = gmpy2.mpfr(0) # start addition of remainder/divisor
for k in range (0,n+1) :

divisor3 = gmpy2.mpz (72 * k + 45)

resto3 = gmpy2.fmod(pplk],gmpy2.mpfr (divisor3)) # MOD remainder, division

Suma3a = Suma3a + gmpy2.div (gmpy2.mpfr (resto3),gmpy2.mpfr (divisor3))
Suma3b=gmpy2.mpfr (0)
for k in range(n+1l, N):

Suma3b = Suma3b + gmpy2.div(gmpy2.mpfr(pp(k]l),gmpy2.mpfr (72 * k + 45))
Suma3 = Suma3a + Suma3b
Suma3 = Suma3 - gmpy2.trunc(Suma3) + 2.0 #Wildcard
# fourth independent processor
Sumad4a=gmpy2.mpfr (0)
for k in range (0,n+1):

divisor4 = gmpy2.mpz (216 * k + 189)

resto4 = gmpy2.fmod (pplk],gmpy2.mpfr (divisord))

Sumada = Sumada + gmpy2.div (gmpy2.mpfr (restod),gmpy2.mpfr (divisord))
Sumadb = gmpy2.mpfr (0)
for k in range(n+l, N):

Sumadb = Sumadb + gmpy2.div (gmpy2.mpfr (pplk]),gmpy2.mpfr (216 * k + 189))
Suma4 = Sumada + Sumadb
Suma4 = Sumad4 - gmpy2.trunc (Suma4)
#Return to the first processor

#The four processes are added to obtain the digits from n+l
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digitsPi = Sumal - Suma2 + Suma3 - Sumaé
digitsPi = digitsPi - gmpy2.trunc(digitsPi) #removing wildcards from operation

print ("\n Digits for Pi=",100000000000000000*digitsPi)

Context, GoogleColab memory, no GPU
n=100000
gmpy2.get_context().precision=100030
e The digits from position 100001
e [t took 48 minutes to get the decimals from the decimal of pi, or to count from 100001

35313143701227785.9945834190409522277028782321011429272630984990069538973640900
7078663919526994412320084652362036352279720143549310285770719666221

8. Conclusion

This paper was an essay that brought together the main motivations of mathematicians in history that lead
to this enigmatic number pi. We detail with simplicity the mathematical representations of researchers,
from different eras, to answer the original problem of squaring the area of the unit circle, equal to pi.
The contribution of the quadrature of Hippocrates' lunula, highlighted by the mathematician Alhacen,
raised the expectations at the time for solving the squaring of the circle. We learned how continuous
functions can graph the complex scheme leading to this number. The intervention of the mathematician
Euler, which radically changed the scenario, managed to demonstrate that complex numbers could be a
better option to understand the original problem. Euler reveals the relationship between the two irrational
numbers: e = 2,718281--- and m = 3,141592 --- . Nowadays, the convergence techniques of alternating
series allowed computer technology to define algorithms that can systematically approximate all decimals
of the number pi. We highlight the series method to find our own ASS algorithm (authored by this author)
for decimal approximation

We conclude that, with the mathematical exercise of the series, a simple way to obtain computational
algorithms to find decimals for this copper number pi, or for any other number, is completed. We were
able to help Akira Haraguchi recite the digits of pi and continue with them from 100,001 onwards.
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